TECHNICAL MEMORANDUM

PREPARED FOR: StarKist Samoa, Inc. (NPDES Permit AS0000019)

PREPARED BY: Steve Costa and Karen Glatzel /gdc

David Wilson/CH2M HILL/SEA

DATE: 31 December 1999

SUBJECT: Chemical Analysis of Effluent:

November 1998 Sampling

PROJECT: 147323.JC.EM

Purpose

This memorandum presents the results of the chemical analyses of StarKist Samoa effluent samples that were collected in November 1998. This was the twelfth sampling and analysis episode conducted under the current NPDES permit.

Study Objectives

Section D.2 of StarKist Samoa's NPDES permit (AS0000019) requires that semiannual priority pollutant analyses be conducted on the cannery effluent. Each effluent sampling event must coincide with effluent sampling for acute biomonitoring. Effluent samples are collected as composite samples as described below. The purpose of these analyses is to identify the chemicals present in the effluent, and provide data to determine whether the wastewater discharge complies with water quality standards.

Effluent priority pollutant analyses include those chemical constituents listed in 40 CFR 401.15. As documented in the Technical Memorandum describing the results of the March 1995 sampling (CH2M HILL, 20 June 1995) the U.S. Environmental Protection Agency Region 9 has allowed StarKist Samoa to exclude a number of previously measured constituents in the priority pollutant list. The constituents currently included in the effluent chemistry analyses are listed in Table 1.

Methods

Between 1200 on 19 November and 0900 on 20 November 1998, a 24-hour, flow-weighted composite sample of final effluent was collected from the StarKist Samoa treatment plant discharge. Effluent composite samples were collected simultaneously for chemistry and bioassay analyses. Table 1 lists the chemical analyses, detection limits, sample holding times, sample containers, and sample preservations for the effluent sample collected for chemical analysis. The standard operating procedures (SOP) for the joint cannery outfall chemistry sampling is provided in the Technical Memorandum describing the bioassay tests conducted with the March 1995 effluent

Effluent Chemical Analysis November 1998 Sampling StarKist Samoa, Inc.

sample (CH2M HILL, 20 June 1995).

Samples were collected from the established effluent sampling site following the established composite sample collection schedule for the priority pollutant analyses. A total of eight individual grab samples were collected into pre-cleaned glass containers at approximately three-hour intervals over a 24 hour period. The samples were stored on ice until the completion of the 24-hour sampling period, and then a flow-weighted composite sample was prepared. The grab sample collection times and the calculated individual volumes of each grab sample used to create the composite sample, based on StarKist Samoa's flow records, are summarized in Table 2. The final composite sample was used to fill the sample containers sent to the laboratory for analyses. The pH of the samples for analysis of metals and total phenols was measured prior to shipping and was less than 2.0 SU. A duplicate sample was taken and shipped without preservative for copper analysis using coprecipitation.

Sample containers were wrapped in bubble-wrap, placed in zip-lock bags, and packed on ice for shipment to the laboratory. Sample chain of custody forms were completed, sealed into zip-lock bags, and taped inside the lid of the ice chest. Samples were shipped to the laboratory via DHL. Samples that were composited on 20 November, were received at Analytical Resources, Incorporated (ARI) 23 November 1998.

Results

Laboratory data sets, laboratory quality control data reports, and chain-of-custody form are attached to this memorandum. The chain-of-custody form is included as Attachment I and the laboratory analytical data sheets and quality control data reports are included as Attachment II. Table 1 indicates the detection limits requested from the analytical laboratory along with those achieved during the analysis. The laboratory indicated, prior to sample analysis, that the requested detection limits could be achieved. Detection limits were achieved for all semivolatile organics and all inorganics. In order to achieve requested detection limit, copper was analyzed using method EPA 200.7, following extraction by co-precipitation.

Semivolatile organics were all at the non-detect level with the exception of phenol, 4-methylphenol, and bis (2-Ethylhexyl) phthalate. Bis (2-Ethylhexyl) phthalate was detected at 31 μ g/l. Phenol and 4-methylphenol are compared with past sample results in Table 3. Total recoverable phenols were detected at 180 μ g/l.

The inorganics analyses detected three chemical parameters in the effluent from StarKist Samoa. Mercury was detected at the reported detection limit (0.0001 mg/l). Arsenic and zinc were detected at comparable levels with those previously reported. Table 3 summarizes the sample results for substances detected for the November 1998 effluent sample analysis compared to those detected during previous analyses.

Effluent Chemical Analysis November 1998 Sampling StarKist Samoa, Inc.

Table 1												
Effluent Sample Analyses and Handling Procedures StarKist Samoa, 19 - 20 November 1998												
	Otani	Detection I		JVCITIBOT 1								
Chemical Parameter	Analytical Method Requested	Requested	Achieved	Sample Holding Time	Sample Containe r	Sample Preservation						
Semivolatil e Organics	EPA 625	10-50	20-200	7 days	1 liter amber glass	4 °C						
Phenols	EPA 420.1	10	40	28 days	500 ml plastic	4 °C 5 ml H₂SO₄¹						
		Inc	organics 2									
Arsenic	EPA 206.2	5	2	6 months	500 ml plastic	4 °C, 5 ml 2N HNO₃ ¹						
Cadmium	EPA 200.7	5	10	"	11	11						
Chromium	EPA 200.7	10	20	"	11	11						
Copper	EPA 220.2	2	10³	11	11	"						
Lead	EPA 239.2	5	1	"	"	"						
Mercury	EPA 245.1	0.4	0.1	"	11	"						
Selenium	EPA 270.1	5	5	11	"	11						
Silver	EPA 272.2	2	0.2	"	"	"						
Zinc	EPA 200.7	20	20	"	11	11						

¹Additional HNO₃ and H₂SO₄ was added to the sample as necessary to bring pH equal to or less than 2 at the time of composting the sample.

² All Inorganics were from one 500 ml plastic sample container, preserved with 5 ml 2N HNO₃, with pH of filled sample bottle measured at 1.65. An un-preserved duplicate sample was taken for Copper analysis using co-precipitation.

³ Method EPA 200.7 used to achieve this detection limit following extraction by coprecipitation.

Effluent Chemical Analysis November 1998 Sampling StarKist Samoa, Inc.

Table 2 Effluent Chemistry 24 hour Composite Sample Collection												
Effluent Chemistry 24-hour Composite Sample Collection StarKist Samoa, 19 - 20 November 1998												
Grab Sample Number	Samplin g Time	Samplin g Date	Effluent Flow Rate (mgd) ¹	Percent of Total Flow	Volume of Sample (ml)							
					1 liter	500 ml						
1	1200	11/19/98	1.82	14.7	147	74						
2	1500	11/19/98	1.65	13.3	133	67						
3	1800	11/19/98	1.29	10.4	10.4	52						
4	2100	11/19/98	1.47	11.8	118	59						
5	2400	11/19/98	1.46	11.8	118	59						
6	0300	11/20/98	1.50	12.1	121	61						
7	0600	11/20/98	1.61	13.0	130	65						
8	0900	11/20/98	1.59	12.8	128	64						
TOTALS			12.39	99.9	999	501						
¹ Mean Effluent Flow Rate = 1.548 mgd.												

		Nov 1998 Sample Results,	hg/L (ppb)		23	Q	9	0.18	QV	Q	360		31		220	680	180											
			Jun 1997						20	S	2	2	ND.	Q	198		Q		750	200	099							
	Results	manifely in a severe.	Sep 1997								12	QN	4	2	10	QN	154		2		630	240	140					
THE PROPERTY OF THE PROPERTY O	sample 1998	, and the state of	Mar 1997		15	ND	4.7	ND	QN	QΝ	150		Q	270	310	290												
The state of the s	Samoa Effluent Chemistry Samp February 1993 - November 1998	(qdd)	Nov 1996		10	QN	5	ΩN	15	QN	111		S		200	490	440											
Table 3 Kist Samoa Effluent Chemistry Sample Besults	nt Cher 3 - Nove	tesults, µg/L	Mar 1996	s	ND 3	QN	ND4	ND	ND ⁶	ND	81	ganics	ganics		320	370	510											
	a Efflue ary 199	Previous Sample Results, μg/L (ppb)	Feb 1996	Inorganic	Inorganics	Inorganic	Inorganic	QN	ΩN	13	QN	NDe	ΩN	63	Semivolatile Organics	QN		32	130	72								
	t Samos Febru	Previo	Mar 1995		ND 2	QN	9	ND	ND 5	ND	120	Serr	QN		32	310	34											
	tarKist		Oct 1994		ND (14) ND	6	QN	9	QN	ND 2	QN	84		QN		140	290	15										
TITLE THE PARTY OF	y of Si	APART AND	Feb 1994											ND	10	15	QN	ND 8	QN	140		Q		45	360	120		
	Summary of Star		Oct 1993 ¹			ND (14)	ND	(ND)	ND	N Q	33 (39)	130 (180)		QN		430	530	1300										
	, and an analysis		Feb 1993				0.9	2	Q	ND	S	130	92		QN		500	260	ΑN									
		Substance			Arsenic	Cadmium	Copper	Mercury	Selenium	Silver	Zinc		Bis (2-	Ethylhexyl) phthalate	Phenol	4-Methylphenol	Total	Recoverable	Phenois									

ND = Not Detected NA = Not Analyzed

¹ Values in parentheses are results of reanalyzed samples (see Technical Memorandum for October 1993 sampling episode).

² Detection limit raised to 50 μg/l because of matrix interference.
³ Detection limit raised to 400 μg/l because of matrix interference, with the resultant concentration <400 μg/l each time.

⁴ Detection limit raised to 25 μg/l because of matrix interference, with the resultant concentration <25 μg/l. ⁵ Detection limit raised to 50 μg/l because of matrix interference, with the resultant concentration <50 μg/l each time. ⁶ Detection limit raised to 200 μg/l because of matrix interference, with the resultant concentration <200 μg/l.

⁷ Detection limit raised to 10 μg/l because of matrix interference, with the resultant concentration <10 μg/l.

⁸ Detection Limit = $0.1 \mu g/l$ for mercury.

ATTACHMENT I CHAIN-OF-CUSTODY FORMS

StarKist Samoa, Inc. Effluent Sample
19 - 20 November 1998

ATTACHMENT II

LABORATORY DATA REPORT Analytical Resources, Inc.

StarKist Samoa, Inc. Effluent Sample

19 - 20 November 1998